The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 1 X X 1 X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 2 X^2 2 X^2 2 X^2 2 X^2 X^2+2 X^2+2 X^2+2 X^2+2 0 0 2 0 2 0 2 X^2 X^2 X^2 0 X^2 X^2+2 X^2 2 2 X^2+2 X^2 0 2 X^2+2 X^2 0 2 X^2+2 0 0 0 2 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 2 2 0 0 0 2 2 2 2 2 0 2 2 0 0 0 2 0 0 0 0 0 2 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 2 2 2 2 0 0 0 2 2 0 0 2 2 2 2 0 0 0 2 2 2 0 0 0 2 0 2 2 2 2 2 2 0 0 0 0 generates a code of length 46 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 45. Homogenous weight enumerator: w(x)=1x^0+30x^45+207x^46+15x^48+2x^61+1x^62 The gray image is a code over GF(2) with n=368, k=8 and d=180. This code was found by Heurico 1.16 in 0.062 seconds.